
Packet Ports For Embedded Systems’

Telemetry/Control

As Used By

Data Exchange with Remote (wired/wireless) Reprogramming

DXRP

(example Port-based App.)

This Document Is Copyright 8/24/2014 childresss@gmail.com

0

1

2

3

4

5

6

7 8
9

10

11

12

13

14

15

Receiving

Port Distributor
(existing code)

Packet Ports For Embedded Systems’ Telemetry/Control

Why Packet Ports?

 Simplify small embedded systems with use of IP-like Ports, some standardized.

 Applications can be transport method unaware.

 Independently developed Apps can coexist on different port numbers with different message formats

 On any port (except 0), message formats are known

 Built-in Message Distribution to correct port listener for each port

 Legacy applications use default port 0 and are unaffected by Packet Ports

 Easy to bridge the embedded systems’ port packets to IP packets

Use Ports in small systems with small sized packets as used in embedded systems/telemetry?

 Yes, very small and efficient, small code size

 Destination ports, no source ports needed here. Bridge to IP by mapping port # and address to IP conventions

 Message content can indicate originator’s (source) info.

Protocols, radios, range?

 Datagram services as in RadioHead (open source). With or without error correction

 Topologies: Star, Routed, Self-forming Mesh, or peer-to-peer

 Typ. < 100Kbps; Lower rates can yield 1+ Mile range w/dipole antenna, 100mW. More with routed/mesh protcol.

 Drivers for popular FM/FSK 2-way data packet radios, about $5.

 Inherent option for routing in the wireless itself, via static or mesh

Why not WiFi or Bluetooth?

 Many apps. need low cost low power consumption radios. Most here are sub-GHz ISM bands

 Plus good range that comes from narrow channel widths, lower bit rates (e.g., operate to -100dBm)

 WiFi/Bluetooth/BLE makes sense when 20MHz channel and high data rates but ~300 ft. range

Implemented?

 Yes, RadioHead’s protocols and multi-radio drivers are well established. Supports port number passing in headers.

 DXRP (Data Exchange with Remote Programming) and OTAR is new, beta-tested with Packet Ports

Packet Ports For Embedded Processors, Telemetry/Control

On Any One Port Number, Message Formats Are Known
(except for port 0)

Like IP, Some Reserved Ports Have Well-known Data Message Formats

0

1

2

3

4

5

6

7 8
9

10

11

12

13

14

15

Receiving

Port Distributor
(existing code)

RadioHead

or

IP Protocols

C Code Service for

Legacy and non-port-based

packets (will have port=0)

Data Format is “any”.

From

PPPP=Dest. Port No.

A = ACK flag bit

Xxx = unused

Packet Payload has no

Port Distributor Info.

RadioHead’s routers

forward PPPP bits.

To Flags Other

Axxx PPPP

RadioHead

packet header:

Bits

IPv4 packets to/from

Radio Head:

Map RH port No to 16 bits

Copy RH payload verbatim

Translate RH address to IP Addr.

C Code Service for DXRP

Formatted Messages.
(DXRP = Data Exchange

w/Remote Reprogramming)

(Existing code)

C Code Service for

HVAC Heat Pump Control (e.g.)

C Code Service for

Lighting Control (e.g.)

Physical Layer

(Wireless/wired)

RX.

Outgoing

Packets

w/Dest. Port #

Receiving Port Distributor calls a

port’s Service with data payload

portion of a packet. Listener is

transport-unaware as in IP systems’

sockets.

Service process then returns a

response packet to be sent the on

same port #, or a NULL..

Listeners are defined at design-time or

register themselves at run time.

Proposal:

Ports 1-6 Reserved For Utility/Universal

Apps. Ports 7-15 are user-defined formats.

Port range might extend to 32 or more.

TX

TX

RX.

Packet Ports and DXRP are

implemented and tested as

shown in later slide.

Example/Demo Ports App: DXRP
• Reliable bulk data exchanges (1-n hops, CRC for entire data set is passed)

• Tell recipient type of data, e.g,. Replacement program code vs. log data

• Discover network nodes’ addresses in range of Gatway

• Authenticated remote command to reflash program just sent (OTAR)

• Get reports on nodes’ code version, RSSI at node, etc., via “hello/ping” message

• Gateway node to make a Windows, Linux, Rpi, Mac computer an addressable network member

• Python (machine independent) program for computer DXRP control via graphical user interface

Demonstration DXRP Configuration - - Packet Ports and DXRP code on PC.

MCUs use Arduino-compatible libraries and C/C++.

Address 0

Computer: Windows,

Linux, Mac, RPi, etc.

Python for GUI and

protocol stack

Address 234 plus an any-

address Gateway

Embedded System

Processor w/radio (e.g.,

$16 Anardino mini-wireless

with Atmel AVR, radio,

RTC, 16MB data flash.

Small-Packet

Wireless

Star, Routed,

Mesh Topology

Same hardware as gateway

Teensy 3 ARM MCU with add-

on radio board. Teensy 3 can

also be a gateway

Sensors and

Controlled

devices

LAN,

WAN

Video Demo

Of Ports and DXRP as on prior slide

Port #TBD (1?) DXRP Messages Implemented and Tested as of 8/21/14
Note: The below omits the MAC layer ACKs and other link management messages

Message Source Destination Explanation

Hello Gateway(s)

(used at startup)

Computer /

Server

255 (all) RH::Datagram. Medium:Typically point to point wired serial.

Only gateways respond. Server discovers their addresses. Server can

be embedded processor that uses same messages as a computer

Hello / Ping Any Any RH::Reliable_Datagram. Medium/PHY: Typically wireless, sub-GHz, low

cost, 100Kbps or less depending on desired range and link margin.

Hello / Ping Response Addressee Sender (typ.

Computer, but any)

Protocol and PHY same as above.

Response include telemetry on status, Firmware Version #, RSSI, etc.

StoreTo

(over the air

reprogramming and

data file send/receive)

Server Any Protocol and PHY same as above.

Asks if OK to store X bytes in storage place-code n, where n=0 if no-

store, just test transfer. Tells receiver what the length and CRC of full

entire data item shall be.

Some StoreTo code n’s are for extra program code variations or for

data.

ReadFrom Request and get data set previously stored at addressee.

Not yet implemented.

Accepted Addressee Server Response to StoreTo or Data Segment. Sent if received error free and

Addressee can store and after completing storage work.

Rejected Addressee Server Rejection of any message due to security denial/permissions or lack of

resources such as storage space, or data error such as CRC fault.

Data Segment Server Any Next data segment, typ. Max-sized for medium. Includes frame and user

data CRC check codes for Addressee to use. Respond with Accepted or

Rejected.

Data Segment Done Server Any Tells addressee that all Data Segments have been sent. Addressee must

do final processing including full-data CRC check, then respond with

Accepted or Rejected message.

Reboot/Restart Server Any Respond with Accepted or Rejected. If approved, addressee shall

reboot/restart and if applicable, install newly received program code.

Server delays and issues Hello/Ping and looks at response’s Version #.

Port Distributor and DXRP Testing status as of 8/21/14 (s. childress)

Note: The list below omits the MAC layer ACKs and other link management messages

Protocol Choice Usage Comment

RH::Driver (raw) Testing Same frame/packet structure as below, but application program must

populate the from/to addresses, send this raw packet, react

accordingly.

RH::Datagram

With low error rate

medium

Used for RS232, UART/UART, RS485, etc. where error checking at

application layer is sufficient. No medium ACKs or retransmissions

C++ base class is Driver

RH::Reliable_Datagram With error prone

medium

Used for wireless and some wired medium. Includes ACKs,

retransmissions due to ACK timeout. Detects duplicate data and ACK

packets based on packet sequence numbering (ID # in header).

C++ base class is Datagram

Below: Not yet tested with DXRP messages. Have been tested in other applications. Simple code change; testing more complex.

RH::Routed Extend coverage in

wireless, using “relay”

routers

Static routing table entry add/delete messages are sent on the network.

Each network node that routes has a table of in-range neighbor

addresses. Nodes without routing tables are end points that do not

forward or relay.

 C++ base class is Reliable_Datagram

RH::Mesh As above, but for

dynamic routing, e.g.,

due to node mobility

or varying RF

conditons

Simple form of self-forming, self-healing mesh routing (ad-hoc).

Routing tables as in “Routed” above are created and updated

automatically.

Message latency can be longer in such a mesh.

C++ base class is RH::Routed

PC, Linux, Mac, Rpi,

BeagleBone, etc.

Addr: 0

(0 to 255)Hello Gateway(s)

(234 to 0) Hello Response

(0 to 70) Ping

Gateway

(transparent) Node 70

Node 234

(0 to 70) Ping

Medium:Wired UART Protocol

e.g., RH::Datagram

Medium: Wireless

Example protocol: RH::Reliable_Dgram

(70 to 0) ACK

(70 to 0) PING Response++

(0 to 70) ACK

(70 to 0) PING Response++

Response++ Includes

Telemetry/stats on RSSI,

errors, packet stats, Firmware

revision no., etc.

Message Ladder Diagram. DXRP Messages on Port TBD (1?)

Example Simple Messages: Computer to node via transparent gateway.

Startup and a Ping.

ACKs are one byte messages

Shown here: Star topology.

Routed/Mesh network would

have routing (forwarding)

nodes in the paths –

transparent.

Time

PC, Linux, Mac, Rpi,

BeagleBone, etc.

Addr: 0

(0 to 70) StoreTo (type n)

Gateway

(transparent) Node 70

Node 234

Medium:Wired UART (could

be Ethernet LAN, etc.)

Protocol RH::Datagram

Medium: Any shown on next chart

Protocol RH::Reliable_Datagram

(70 to 0) ACK

(70 to 0) ACCEPTED

(0 to 70) ACK

(70 to 0) ACCEPTED

StoreTo includes metadata:

Storage Type:

0=test;1=program;image;2=other

Size in bytes

CRC16 (spans all data bytes)

Data name string (file name)

Message Ladder Diagram: Example of DXRP Bulk Data Transfer to end point – e.g., (OTA reprogramming)

Port TBD (1?) . Tested and working to include bootloader re-flashing at remote node.

(0 to 70) StoreTo (type n)

ACCEPTED means end point is

able to process per StoreTo

metadata. Only receiving node is

aware of storage addresses.

(0 to 70) Data Segment
(0 to 70) Data Segment

(70 to 0) ACK

(70 to 0) ACCEPTED

ACCEPTED means node has

received without error and has

processed and stored. This is flow

control vs. storage media speeds. (0 to 70) Data Segment Done

Etc. for all data segments

(0 to 70) Data Segment Done

(70 to 0) ACK

(70 to 0) ACCEPTED

(70 to 0) ACCEPTED
(0 to 70) ACK

Time

Msg ID

1 byte

Msg ID2

 1 byte

Length

 1 byte

Security

 1 byte

Data Section

Typically 0-60 bytes
uCRC 16

2 bytes

Unique

2 bytes

Preserved across

bridges/gateways

Message Integrity Check

(End to end MIC)

CRC of Data Payload bytes

Some transports also have

error check codes.

Format

Validation

helper

Message ID and

sub-ID2 if needed

Size of Data

Section
Optional coded encryption mode.

Only the final “To” node can decrypt.
0x01 = NIST AES128/CCM w/block Truncation

(end to end encryption, not medium-specific)

Data Message

content formatted per

port # agreements

Physical (PHY) and Medium (wired, wireless, IP, etc.) (MAC) independent

Transport packet preamble/header Data Payload Section for end-to-end, routed, bridged, gateway’d
Transport

Medium(s)

Example payload (RadioHead or IP) data for DXRP use case on its port (1?). Other ports

may adapt this format or define wholly new ones for that port # with a user system.

From, To, Dest. Port #, seq. #,

are here, for all transports

Unreliable datagrams can be used if messaging or that port # has application layer error correction.

Messages for Port #TBD (1?) as on prior pages can use unreliable datagrams in RadioHead bridge to UDP

DXRP’s default is reliable datagram with error correction, presuming use of Wireless transport.

